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Abstract. An increasingly popular approach when solving the phase and chemical equilibrium 
problem is to pose it as an optimization problem. However, difficulties are encountered due to the 
highly nonlinear nature of the models used to represent the behavior of the fluids, and because of 
the existence of multiple local solutions. This work shows how it is possible to guarantee e-global 
solutions for a certain important class of the phase and chemical equilibrium problem, namely when 
the liquid phase can be modeled using neither the Non-Random Two-Liquid (NRTL) equation, or 
the UNiversal QUAsi Chemical (UNIQUAC) equation. Ideal vapor phases are easily incorporated 
into the global optimization framework. A numberof interesting properties are described which 
drastically alter the structure of the respective problems. For the NRTL equation, it is shown that the 
formulation can be converted into a biconvex optimization problem. The GOP algorithm of Floudas 
and Visweswaran [8, 9] can then be used to obtain e-global solutions in this case. For the UNIQUAC 
equation, the new properties show how the objective function can be transformed into the difference 
of two convex functions (i.e. a D.C. programming problem is obtained), where the concave portion 
is separable. A branch and bound algorithm based on that of Falk and Soland [6] is used to guarantee 
convergence to an e-global solution. Examples are presented which demonstrate the performance of 
both algorithms. 

Key words: Global optimization, phase equilibrium, biconvex and DC programming problems. 

1. Introduction 

A crucial step in the design of any separation process is the ability to predict the 
behavior of the fluids, when there may be several fluid phases and components 
that may or may not be reacting. For many separations processes, the assumption 
that the fluids are in equilibrium is made. The goal is to effectively model these 
processes over a potentially wide range of operating conditions. Such models can 
yield complex and nonlinear expressions with resultant difficulties in obtaining the 
solutions that actually describe the process. 

For the phase and chemical equilibrium problem there have been essentially 
two basic approaches. The first of these is equation based, and is not considered 
in this work. A useful reference in this area is the book of Smith and Missen [21]. 
An increasingly popular approach is to explicitly minimize the thermodynamic 
function that describes the equilibrium condition. In the context of this work, this 
function will be the Gibbs free energy, and a global minimum implies that the 
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system at hand is at equilibrium. Seider et  al. [20] provide a review of the methods 
used to solve this optimization problem. Ohanomah and Thompson [14, 15, 16] 
give a comparative study of the available methods. These methods have typically 
been second-order Newton type methods with resultant dependency on starting 
point in terms of quality of the final solution. Other approaches have been used. 
Sun and Seider [22] use a Newton-homotopy continuation algorithm to obtain the 
stationary points of the Gibbs free energy surface. Paules and Floudas [17] employ 
the Global Optimal Search algorithm of Floudas et  al. [7] to find the equilibrium 
solution. Eubank et  al. [5] provide an interesting alternative approach based on 
integrating the area under the Gibbs free energy curve. 

It is observed that all these algorithms share one drawback: there is no theoretical 
guarantee of convergence to the true equilibrium solution - or even to a proper 
local solution in some cases. This represents a serious disadvantage in attempting to 
describe phase equilibrium with or without chemical reaction. Due to the complex 
nature of the models used to describe the equilibrium situation, there may be several 
local solutions to the problem at hand. Thus, the certainty of convergence to the 
global solution for conventional methods will be highly dependent on starting 
point. 

In this paper, the phase and chemical equilibrium problem is examined for the 
case where the liquid phase can be modeled by the NRTL and UNIQUAC equations, 
and the vapor phase is assumed to behave ideally. Both of these equations have 
the ability to predict liquid-liquid immiscibility and can describe multicomponent 
mixtures with binary parameters only, The NRTL and UNIQUAC equations are 
algebraically complex and lead to highly nonconvex expressions for the Gibbs free 
energy function that usually lead to multiple local solutions. 

In the following section, the requisite thermodynamic background for the phase 
and chemical equilibrium problem is provided, describing the assumptions that 
are made in this work. Then, a simplifying property for the NRTL equation is 
presented. It will be shown how the formulation for the NRTL equation can be 
transformed from its original nonconvex form into an optimization problem where 
a biconvex objective function is minimized subject to a bilinear set of constraints. 
This induced special structure allows the Global OPtimization (GOP) algorithm 
of Floudas and Visweswaran [8, 9] to be used to obtain global solutions to this 
problem. Next, the structure of the UNIQUAC equation is examined in detail. Two 
important properties are introduced which simplify the Gibbs energy expression, 
but still leave it in a nonconvex form. Additionally, some manipulation of terms 
reveals how this nonconvex expression can be transformed into the difference of 
two convex functions, where the concave portion of the objective function can 
be either nonseparable or separable. These changes occur purely in the objective 
function, so that it is not necessary to introduce new transformation variables 
as is the case for the NRTL equation. Having induced this special structure in 
the problem, an algorithm based on the branch and bound algorithm of Falk and 
Soland [6] is used to obtain the global solution of this problem. In summary, the 



THE PHASE EQUILIBRIUM PROBLEM 207 

main contribution of this work is to show that for ideal vapor phases and liquid 
phases whose behavior may be predicted by the NRTL or the UNIQUAC equation, 
attainment of an e-global solution can be guaranteed from any starting point. 

2. Problem Formulation 

In this section, a general outline of the phase and chemical equilibrium problem will 
be given. The focus is on systems that attain equilibrium states under conditions 
of constant temperature and pressure, where the global minimum value of the 
Gibbs free energy describes the true equilibrium state. The set of components 
is represented by the index set C = {i} and the elements that constitute these 
components are given by E = {e}. The set of phases is denoted by P = {k} 
where it is composed of vapor and liquid phases, labeled Pv and PL respectively, 
so that P = Pv U Pc. The problem may then be stated as follows: 

Given i components participating in up to k potential phases under isothermal 
and isobaric conditions find the tool vector n that minimizes the value of 
the Gibbs free energy while also satisfying the appropriate material balance 
constraints. 

For a multicomponent, multiphase system, the criterion of equilibrium dictates that 
the Gibbs free energy function, G(n), attains its minimum: 

] ~  (1) min G ( n ) =  X X n~ {AGki 'f + RTlnfk,o j 
iEC kEP ai 

fk,O where n/k is the number of moles of species i present in phase k, ]~ and Ji are 
the fugacity coefficients for the mixture and the pure component at the standard 
state respectively. The standard state is the fugacity of the component in its pure 
state at the temperature and pressure of the system. AG~ 'f represents the Gibbs 
free energy of formation of component i in phase state k at the system temperature. 

Difficulties in the use of Equation (1) arise due to the complicated expressions 
available for the expressions for fugacity. The liquid phase is modeled through the 
use of activity coefficients where the fugacity ratio is expressed as: 

.f/L _ "//Lx/L (2) 
,~ 

where x L denotes the mole fraction of species i in the liquid phase, and 7 5 is the 
corresponding activity coefficient at the system temperature and pressure. 

The fugacity of the ideal vapor phase can be expressed as follows: 

fiv= PV y (3) #,0 
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where y V represents the vapor phase mol fraction at a total system pressure P. The 
standard state for the vapor phase is taken as an ideal gas at unit fugacity at the 
system temperature where this quantity is usually equal to 1 atm. 

2.1. Material Balances 

The objective function as described by Equation (1) must yield a solution that 
will satisfy the conservation of mass requirements. These can take either of two 
forms depending on whether reaction occurs in the system and introduce a set of 
linear equality constraints into the formulation. 

(a) Elemental Constraints: For simultaneous phase and chemical equilibrium where 
reaction does occur, conservation of the constituent atoms must be satisfied: 

~ a~in~ = be Ve E E (4) 
iEC kEP 

where aei represents the number of gram-atoms of element e in component i, and 
b~ the total number of gram-atoms of element e in the system. 

(b) Mass Balance Constraints: These constraints are required for those systems 
where no chemical reaction takes place, and thus conservation over the compo- 
nents need only hold: 

kEP 

where n T is the total number of moles of component i in the initial charge. 
For notational clarity, the material balance constraints for any system, reacting 

or non-reacting, will be written in the following general form: 

A �9 n - b = 0 (6) 

where n represents the column vector of the component mol numbers, A is the 
appropriate elemental or compound abundance matrix, and b is the column vector 
of the total amounts of elements or compounds in the system. 

Feasibility Constraints: Obviously a physically realizable solution requires that 

0 < n~ < n T ~/i E C ,  k E P (7 )  

where n T is the total number of mols in the system. 
The complete formulation of the phase and chemical equilibrium for ideal 

vapor phases and liquid phases whose fugacities can be adequately modeled by the 
NRTL or UNIQUAC equation, is given by minimizing the expression of Equation 
(1) subject to the material balance constraints supplied by Equation (6) and the 
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feasibility constraints of Equation (7). The variables of the formulation are the 
mol numbers n/k, noting that the mol fractions can be defined in terms of the 

k for all components and phases. There are two mol numbers as xki = n~ / ~ nj 
J 

important observations in regard to the optimization formulation: 

(i) The constraint set is of small size and linear. 

(ii) The only nonlinearity appears in the objective function as n~ In ~/fo. 

If the system is ideal then any local solution will be the global one. However, the 
main difficulty is that due to the complex nature of the models used to predict 
fugacities, highly nonconvex functionalities result. This may lead to local or trivial 
solutions that are not true equilibrium solutions, and may lie far away from the 
correct optimal solution. The obtained solution will also be highly dependent on 
the chosen starting point. 

3. Analysis for the NRTL Equation 

In this section, the Gibbs free energy expression is analyzed for the case of an 
ideal vapor phase and liquid phases modeled using the NRTL activity coefficient 
expression. Renon and Prausnitz [19] derived the following equation for the liquid- 
phase activity coefficient: 

_ lEC ln-y~ + ~ rq V i e  C (8) 

jEC lEC lEC 

where "7/is the activity coefficient at mol fraction xi, Tij and ~ij are non-symmetric 
binary interaction parameters. Tij Can be negative but 9~j is always positive. One 
important feature of the NRTL equation is its capability of representing liquid- 
liquid immiscibility for multi-component systems with only binary parameters. 
Equation (8) yields exactly the same expression for mol numbers as for mol 
fractions. Substitution of Equation (8) into Equation (2) yields the correct liquid 
phase fugacity term, after rewriting the mol fractions in terms of mol numbers. 
Equation (3) is assumed to define the vapor phase fugacity. Again, the mol fractions 
are written in terms of the vapor tool number variables. Substitution of the resultant 
vapor and liquid phase fugacity equations into Equation (1) gives the Gibbs free 
energy function as follows: 

f 
min O ( n ) =  ~ ~ n~ ~ AG~'f 

iec kCP [ RT 
- -  + l n - -  

n,} 
k 

j E c  
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+ E E  
iCC kEPL 

nk i jEC ~3 j IEC 
E ..nk -'1- E Tij 

jEC IEC IEC 

(9) 

where G(n) = G (n) / R T  (i.e. dimensionless G). Note that the pressure term asso- 
ciated with the fugacity of the vapor phase has been incorporated into the Gibbs 
energy of formation term, that is, AGVi 'f = A G  v'y + R T  In P. This is done in 
order to collect the linear terms of the objective function. 

3.1. Analysis of G(n) 

As given by Equation (9), G(n) is a complex and nonconvex expression. However, 
the situation is ameliorated by the following property: 

PROPERTY 3.1. For each phase k E P, the following relation is true: 

jEc IEC IEC 

Proof See Appendix A. 

= 0 .  

(10) 

[] 

This property reduces the complexity of Equation (9) greatly, and it brings the 
crucial advantage of having bilinear, rather than trilinear, fractional functions in 
the expression for the objective function. 

PROPERTY 3.2. 
function fi(n) with n > 0 as follows: 

ni 
fi (n) = ni In 

E pjnj 
j 

then fi (n) is convex. 
Proof See Appendix B. 

Let Pi be positive parameters defined Vi. Define the real-valued 

[] 

REMARK. Based on Property 3.2, if CkN is defined as follows: 

C~ = n i R ~  + In Vk E P 

j~c ) 
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then the quantity ~ C A is convex, since it is a summation of individually linear 
k 

and convex terms. 

This means that the objective function can now be written as a combination of a 
convex portion, and a nonconvex portion: 

m i n G ( n ) = ~ C ~ + ~  ~'~ nki {j~c ~ijvijnk } (11) 

lEC 

The nonconvexities of Equation (11) now lie solely in the term to the right of the 
plus sign. The following NonConvex Formulation (NCF) is a new formulation: 

min G(n) } 

s . t . A ,  n - b = O  (NCF) 

O<_n<n T 

where G(n) is defined by Equation (11) and is a much simpler form for the Gibbs 
free energy function than that customarily given by Equation (9). 

3.2. Transformations and Partitioning 

The general form of the optimization problem of interest is given as follows: 

min f (x ,y)  
~c~y 

s.t. h(x,y) = 0 

g(x,y) <_ 0 (12) 

x E X  

y E Y  

where X and Y are convex sets, f(x,  y) is the objective function to be minimized, 
and h(x, y) and g(x, y) represent the vectors of equality and inequality constraints 
respectively. These functions are assumed to be continuous and piecewise differen- 
tiable on X x Y. The GOP algorithm of Floudas and Visweswaran [8, 9] can be used 
to determine an e-global solution for problems that satisfy the following conditions: 

Conditions (A ): 

�9 f(x,  y) and g(x, y) are convex in x for all fixed y and convex in y for all fixed 
X, 

�9 h(x, y) is affine in x for all fixed y, and affine in y for all fixed x, 
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�9 X and Y C_ V are nonempty, compact convex sets and a constraint qualification 
is satisfied, where V = {y : h(x, y) = O, g(x, y) < O, for some x E X}. 

It will now be shown how new variables are introduced so as to change the 
nature of the nonconvexities in the objective function defined by Equation (11). 
This is known as the transformation phase. Having augmented the variable set in 
this way, it is then partitioned into two variable subsets, so that Conditions (A) of 
the GOP are satisfied. If the following new variables are introduced: 

k 
t~k i = ni Vi E C ,  k E PL ( 1 3 )  

jEC 
then the transformed objective function becomes: 

T'" k min G ( n ) =  ~ C ~ +  E E n~ { ~  gi j  , .7~j}  �9 (14) 
kEP lEG kEPL jCC 

This objective function is now subject to the transformation constraints of Equation 
(13) (which are rewritten by bringing the denominator over to the left hand side so 
that they will be of bilinear form, rather than fractional), in addition to the material 
balance constraints as defined by Equation (6). The objective is to partition the 
variable set into two subsets so that if either of these subsets is held constant, an 
optimization problem with simpler structure remains. An examination of Equation 
(14) leads to the conclusion that the obvious partition of variables is that in which 
the y variable set contains the mol vector, with the x variable set containing the 
new variables: 

y +.- { , r  x { v b .  (15) 

Notice that if the mol number variable set is held constant, a linear objective func- 
tion results. On the other hand, if the transformed variable set is held constant, 
a convex objective function is obtained. The equality constraints are of bilinear 
form and so will yield linear terms if either of the subsets is held constant. Thus, 
Conditions (A) of the GOP are satisfied. The form of the nonconvexities of the 
objective function have been changed, resulting in the introduction of additional 
bilinear equality constraints into the system. 

3.3. The Primal Problem 

The primal problem is defined as the subproblem that results when the y vari- 
able set is held fixed so that y = ~7. In what follows, overbars on variables represent 
their values obtained from any given primal problem, which is defined as follows: 

min E d} + ~ E fi~ { E ~ijTij~k } ] 
kEP iCC kEPL jCC 

(P) 
�9 { E  = w c ,  k 

jEc 
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{fi~} represents the current value of the mol numbers (the y variable set). The 
primal problem (P) is always feasible provided that the mol vector satisfies the 
material balance constraints which are functions of the y variables alone. Hence 
they can be carded directly to the relaxed dual subproblems. This is the reason 
the material balance constraints are not included in (P). Notice that (P) is merely a 
function evaluation as the x variable set is completely specified by {ilk}. 

It will be necessary to use the Karush-Kuhn-Tucker (KKT) conditions for the 
primal problem in proceeding sections. The Lagrangian as constructed from the 
primal problem is given as: 

kEP iEC kEPt jEC 

+ E E A,~ { ~ .  E 9jifi~ - fi/k} (16) 
iEC kEPL jEC 

where A,~ is the multiplier associated with the corresponding constraint that defines 

the x variable 't'/k. The evaluation of the KKT conditions for the primal yields: 

V~L(x,g,A)= ~ Gji'rjifi]+A,~ . ~ 9j~fi] = 0  ViEC, kEPL. 
jEc jEC 

(17) 

The Lagrange multipliers from the primal are then explicitly calculated as: 

- j~c ViEC, k E P L .  (18) 

jEC 

Thus, the multipliers from any primal problem are nonempty and bounded for all 
y E Y, a required condition to guarantee e-global convergence. In the special case 
that ~ ~j~n~ = 0, it is clear that n/~ = 0 Vi E C, that is, the phase disappears. 

j 

The corresponding primal constraints are then of the form ~ �9 0 = 0. This 
implies that any value for the Lagrange multipliers can be chosen so that the KKT 
conditions will be satisfied for the primal problem and ) ~  = 0 Vi E C is one 

obvious choice. Thus, if for a given phase k, n~ = 0 Vi E C, then set A~,~ = 0 
Vi E C; otherwise use Equation (18) to calculate the multipliers. This eliminates 
the problem of obtaining unbounded values for the multipliers from the primal 
problem. It is therefore seen that solving the primal problems and obtaining the 
corresponding multipliers amounts to simple function evaluations. 
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3.4. The Relaxed Dual Problem 

The primal problem establishes upper bounds on the solution. The relaxed dual 
subproblems supply lower bounds on the global solution. The details of the deriva- 
tion of the Lagrangian for use in the relaxed dual is described in the following 
section. 

3.4.1. Derivation of the Lagrangian 

The first step in deriving the Lagrangian is to separate and collect all the x variable 
terms to obtain: 

L(~,~,~): E E ~ {E ~,~-~ + ~,~ E ~ }  
iEC kEPL jEC jEC 

+ E c~-E E - ~ .  (~9) 
kEP i~.C kCPL 

Equation (19) is simplified by enacting the following steps: 

(i) Subtract Equations (17) with )~,~ = )~v~ from the terms within the curly 
braces of Equation (19). 

(ii) Use Equations (18) to modify the term to the right of the minus sign in Equation 
(19). 

The following expression is then obtained: 

iEC kEPL jEC 

kEP iEC kEPL jEC 

Note that if n~ = fik i Vi E C, k E PL, then the Lagrangian equals the objective 
-~ By evaluating the gradients of the function value supplied by the primal at n i . 

Lagrangian given by Equation (20) with respect to the x variables, the following 
equations are obtained: 

jEc  

Vi E C ,  k E PL . (21) 

These are the qualifying constraints written in terms of the x variables and describe 
the fundamental nature of the interaction of the two variable subsets. Notice that 
each x variable multiplies a summation of y variables, so that these constraints 
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form hyperplanes that partition the y variable space. The next important step in the 
development is to obtain a much simpler set of partitioning hyperplanes. This is 
achieved by simple augmenting the set of x variables, so that each one of these new 
x variables will interact with a single y variable, rather than a summation of them. 
This augmented set of variables, denoted {,~,/kj }, is defined for each {i, k } E C x Ps 
as follows: 

~t~ = ~/k Vj E C .  (22) 

The x variables are now allowed to appear within the innermost summation of 
Equation (20) to yield an equivalent Lagrangian as follows: 

L ( x ' Y ' ~ ) = Z  E { E  ~ . [Gj i { , j i+~}]  " [n)-~)]} 
iEC kEPL jCC 

kEP iEC kEPz jEC 

Equation (23) now supplies the new form of the qualifying constraints, labeled 
~/~ (y), obtained from the modified Lagrangian of Equation (23) as: 

V i E C ,  j 6 C ,  k E P L .  ( 2 4 )  

Thus, each qualifying constraint is now a function of a single y variable, with 
the important result that the hyperplanes are now orthogonal to each other, and 
partition the y variable space into n-rectangles (i.e. simple boxes). The number of 
connected variables is given as: 

Ncv = [CI" IPLI (25) 

where the braces signify the cardinalities of the appropriate sets. 
In Equation (24), each qualifying constraint shares the same basic form, defined 

as (n~ - fi~). The only difference is the expression that premultiplies this term. 
These are constants that depend on the parameters of the NRTL model and informa- 
tion from the primal in the form of the Lagrange multipliers. Equation (7) delineates 
the feasible region as an n-rectangle. The initial parent region is described by this 
n-rectangle, and its bounds are represented by R {~R, b/R}, where s = { s  } 

andb/R = { < ~  } comprise the regional bounds for the variables {n~}. Upon choos- 

hag an initial point {fi~}, this parent n-rectangle is partitioned by Ncv orthogonal 
hyperplanes passing through {~/k}, so that 2 NCv new n-rectangles are created. 
Within each of these new n-rectangles, the sign of (n/k - fi/k) will be constant 
Vi E C, k E PL. The bounds for each of these n-rectangles are described as the 

B B B B B B box bounds, denoted B {/: ,H } ,wi thL:  = {s k} a n d L  = {b/k}repre-  

senting the individual box bounds for the variables {n/k}. The set of all possible 
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B 2 
n2 S = { -1,+1 } 

/ 
nl / 

Bz 

n2 

B 4  
I 

I 
B4 

S i = { -1,-1 } 

B I \  

1 Initial Point 

.S 
T B1 nt 

Fig. 1. Example for two connected variables. 

B 1 
\ Si  = {+1'+1} 

B 3 
/ S i ={+1, -1}  

n I 
it 

combinations of box bounds is denoted by CB,  with its 2 lvcv members individ- 
ually referred to as Bz. The parameter s~  ~ is used to delineate each of these box 
regions and is defined over C x PL X CB.  It determines the partition of the y 
variable space for any given Bt as follows: 

I f s ~  z = + l  t h e n n / k - ~ / k > 0 ~  V i E C ,  k 
E PL. 

I f s ~  z = - I  thenn~ ~ _ < 0  l 

Figure 1 shows bow s Bz is used to create these regional and box bounds at the first 
iteration for the case of 2 connected variables, with C - {il, i2} and PL -- {kt}. 
The initial point generates 4 subdomains denoted B1 through/34. 

This implies that it is possible to construct Lagrangians that validly underesti- 
mate the global solution in each of these n-rectangles, within which an individual 
relaxed dual subproblem is solved. If the solution is greater than the current best 
upper bound obtained from the primal problem, it may be fathomed (i.e. discarded); 
otherwise, it is added to the set of candidate lower bounds. The infimum of all such 
solutions supplies the point for the next iteration, where the n-rectangle associated 
with this node will be partitioned into 2 Nov n-rectangles to supply additional lower 
bounds on the final solution. In the context of Figure 1, suppose the infimum of the 
4 lower bounds lies in/32. At the next iteration, B2 is divided into 4 regions, and 
SO on. 
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A convenient way of describing this partitioning of the y variable space in the 
branch and bound approach is through the use of a tree structure. The starting point 
is represented by the root node, labeled R, and it generates 2 Nov nodes at the 
first level of the tree. One of these leaf nodes becomes the next iteration node, in 
turn generating a further 2 Nov additional nodes, and so on. Note that at any given 
iteration, all generated solution nodes share the same parent node, so that each n- 
rectangle is a refinement of its parent n-rectangle implying that the regional bounds 
for a given node are supplied by the box bounds of its parent node. This has the 
important implication that any given Lagrange function will be valid in any future 
n-rectangles that it spawns. In addition, retrieval of previous Lagrange functions 
for use in the current relaxed dual subproblem is easily achieved by employing a 
backward depth-first traversal through the solution tree from the current node to the 
root node, extracting the relevant information required to construct the Lagrange 
function at each node along the path. This set of previous iterations to be included 
in the subproblems of some iteration K is denoted PL(Kp) .  Because a Lagrangian 
is not included for all previous iterations, but only for those whose nodes define the 
current node as a subdomain in the y variable space, each relaxed dual subproblem 
contains relatively few Lagrangians from previous iterations. Thus, each relaxed 
dual subproblem can be both generated and solved efficiently. The manner in which 
the x variable bounds are obtained and set on the basis of the qualifying constraints 
will now be described. 

3.4.2. Bounds for the x variables 

For any given n-rectangle defined by B {s it is necessary to establish 
upper and lower bounds on the x variables within this box. Recall that {k~} are 
defined as linear fractionals. Any linear fractional is a pseudolinear function, that 
is, it is pseudoconvex and pseudoconcave. Thus, there is one local minimum and 
one local maximum that satisfy the KKT optimality conditions, and these will be 
unique global extrema. By examining the KKT conditions for the problem: 

Vj E C~ Vi E C,  Vk E PL (26) min ff2~ s. t ,  EnBk, < nj ~ <_ U~j 
) 

the global minimum value for each ~ in B {s  can be evaluated and is 
labeled Z:v~. - ~  is minimized subject to the same constraints to obtain the 

corresponding maximum,/4~.  The globally valid lower and upper bounds for ~ 

(and hence ~ . )  within the n-rectangle defined by B {s L/B} are given as: 

} 
j r  " j • i  J 

vi ~ c ,  vk E PL �9 (27) 
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Having established the lower and upper bounds on the x variables it is neces- 
sary to decide at what bounds to set the modified x variable set, { ~ } ,  for some 

Bz E CB. Each term involving (n~ - ~ )  is underestimated individually. This 
quantity alone does not determine the bounds at which the x variables are set. The 
terms that premultiply k -k (nj - nj ) must also be considered. Once the combined sign 
of the two terms has been established, the sign of the qualifying constraints as given 
by Equations (24) is known so that the x variables can be set at their appropriate 
bounds for the current and previous iterations as follows: 

For each {i, j ,  k} E C x C x PL perform the following steps: 

1. Current Iteration K: 

-K ~ > 0 If ~ji [Tji + ~,~] �9 ~ - -  

I f  + oj~ < 0  

then ( ~ ) K  = s 

then (~ j )K  = H,r~ . 

2. Previous Iterations K p  E PL(Kp) :  

- K p  If ~ji [Tji + )~V~ ] �9 [(fi~)Kp _ (fi~)K] > 0 

- K p  
I f  + ] " - < o 

then (~/kj)ffp = s  

then ( :~)Kp = / 4 ~ .  

^ B  K 
For any given relaxed dual subproblem, these sets of bounds are denoted by x 

for the current iteration, and ~B~ e for previous iterations. 

3.5. Global Optimization Algorithm for the NRTL Model 

In what follows, ks represents any node of the solution tree, with kc and k t corre- 
sponding to temporary nodes used in the selection of the set of previous Lagrange 
functions. Iks is the iteration number, K,  at which node ks is generated, with K c  
denoting the current iteration number, and K p  representing some previous itera- 
tion. Sc  represents the current node under consideration at any given iteration and 
is obviously a leaf node. The parent of any of these nodes is simply indicated by 
p(k). The combination of variable bounds for the x variables for any given node is 

^ K 
denoted as x Bz . The complete algorithm for the NRTL equilibrium model is now 
given. 

STEP O: Initialization 
Select an initial mol vector n o and convergence tolerance e. 
Initialize Rc {s LtR}, pU = +c~, M L = -c~,  Sc = R, k S = O, lies = O. 
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STEP 1: Primal Problem 
Evaluate (P) to give P ( iK) .  Store ~K, ilK. 
Solve (NCF) to give G* and update pU = min[Pg, p(fiK), ~.].  

STEP 2: Select previous Lagrangians 
Set P L ( K p )  = O, kt = Sc. 

(1) Set K p  : Ik,. Extract ~Kp, iKP. Set P L ( K p )  = P L ( K p )  tA K p  and 
kc  = kt. 

(2) Set kt ----- p(kc). I fk t  = R, proceed to STEP 3; otherwise, return to (1). 

STEP 3: The Relaxed Dual Phase 
(1) Choose a combination of box bounds, Bz from the set CB.  

Evaluate Be {s and {s }" 

Set &B/~ and 2cB~ P and solve (RD) to give #~ and n*. 

min # B 
yEY 

^B K s.t.#B >_ LK(x ~ ,iK, y,~ K) 

.B >_ LK~(~ Bf~, i ~ ,  Y, ~ )  

0 = A . n - b  

VKp E P L ( K p )  

V i E C ,  k E P L  

(RD) 

(2) 

where LK(~B~,  i K, y, ~K) is given by Equation (23). 

(i) If #~ _> pU _ e, then fathom solution. 

(ii) I f#~ < pU _ e, then set ks = ks + 1, p( ks) = Sc, Iks = K ,  pks = # *B, 
n ks = n*, Rks {Z:•,U R} = B {z,B,uB}. 

Choose another set of box bounds Bl from C B  and return to (1). 
If there are no remaining unchosen B~ in CB,  then proceed to STEP 4. 

STEP 4: Select Mol Vector for Next Iteration 
Select infimum of all #kBS, and set Sc = ks,  the associated node. 
Set i K + I  = II ks, M L = lz~* and RK+I {LR,  Lt R} = Rk  s {•R, blR}. 

STEP 5: Check for Convergence 

Check if l pU - M L I /~bz _< e. If true, then STOP; otherwise set K = K + 1, and 

return to Step 1. 



220 CONOR M. McDONALD AND CHRISTODOULOS A. FLOUDAS 

It has been shown how all the conditions required to guarantee e-global conver- 
gence of the GOP algorithm (Floudas and Visweswaran [8, 9]) are satisfied. 

The main computational effort lies in solving the relaxed dual subproblems. 
There is a very simple way to reduce the number of connected variables. The 
material balance constraints appear affinely in the relaxed dual formulation. The 
material balance matrix represented by A has rank r so that r mol number variables 
can be written in terms of the others. In other words r connected variables are 
eliminated. Thus, the number of connected variables is now given as: 

N c v =  16 '1  �9 I P I  - r .  (28) 

For the phase equilibrium problem r = I CI. The derivation of the relaxed dual is 
exactly the same except that now the material balance constraints are not required 
to maintain feasibility. 

Another computational aid is the fact that at a given stage of the algorithm, if 
the current point matches a previous point for some (or all) i E C, k E PL, then 
there is no need for a partitioning hyperplane in that dimension. This reduces the 
number of relaxed dual subproblems to be solved at that iteration. A significant 
number of relaxed dual subproblems are typically eliminated in this way. Note that 
(NCF) can also be solved locally at each iteration (as well as evaluating the primal) 
to give a valid upper bound on the global solution. 

3.6. Examples 

Two examples are presented which demonstrate the GOP algorithm as it applies 
to the NRTL equation. Both these problems have two postulated liquid phases, so 
that the Gibbs free energy of formation terms can be eliminated. The function to 

be minimized is then given as G.~ = [G - ~ i  G~'fnT]/RT, where G is defined 
by Equation (1). 

All the examples have a degenerate set of trivial solutions where the component 
mol fractions in each of the liquid phases are the same. If one of these points is 
used to initiate the search for a local solver, then it will be unable to move from 
the trivial solution, a major problem for local optimization algorithms. The results 
show that the GOP successfully obtains the global solution even when supplied 
with such a trivial solution initial point. 

It is possible to incorporate a simple local search technique into the framework of 
the global optimization algorithm. At the beginning of every iteration, MINOS5.3 
is used to solve (NCF) as a nonconvex nonlinear programming problem, using the 
current mol numbers {fi~} as a starting point. If the resulting solution supplies a 
Gibbs free energy level less than the current best upper bound, then pU is updated 
to equal this new solution. This is done because typically a point close to the global 
solution is generated at a relatively early stage of the algorithm, but this solution 
is not refined until a later point in the solution procedure. The advantage of such a 
strategy is that immediate refinement of solutions (local or global) will occur with 
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TABLE I. Solutions for Example 1. 

Solution for n-Butyl-Acetate (1) - Water (2) 
T = 298 K, P = 1.0 atm 

Feed Liquid I Liquid II G~ 
Components (mols) (mols)  (mols) (--) 

G'6H1202 (1) 0.50 0.00071 0.49929 -0.02020 
H20 (2) 0.50 0.15588 0.34412 (Global minimum) 

C6H1202 (l)  0.50 0.00213 0.49787 -0.01961 
H20 (2) 0.50 0.46547 0.03453 (Local minimum) 

C6H1202 (1) 0.50 0.00173 0.49827 -0.01730 
H20 (2) 0.50 0.37544 0.12456 (Local maximum) 
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the attractive benefit of improved upper bounds at an earlier stage of the algorithm, 
and a greater fathoming rate. In summary, the local search is an efficient way in 
which to generate valid and improved upper bounds, independently of the global 
optimization algorithm. 

3.6.1. Example 1: n-Butyl-Acetate- Water 

The application of the GOP to a simple two component, two phase example is 
now considered. This illustrative example is taken from the thesis of Lin [13] and 
features two components, n-butyl-acetate (1) and water (2), at a temperature of 
298K and a pressure of 1 atm. There are two possible liquid phases and they are 
modeled^using the NRTL equation. Both phases share the same standard state, 
so that Gs supplies the function to be minimized. The binary parameters were 
obtained from Heidemann and Mandhane [ 10]: 

7-12 ~- 3.00498 , 7-21 = 4.69071 

~12 ~- 0.30794, ~21 = 0.15904. 

The initial mixture charge is equimolar (n~ = 0.5 Vi) and no reaction occurs 
in the system. It appears to be a simple example but there are multiple stationary 
points and local solutions. In fact, there is a local minimum and a local maximum, in 
addition to the global solution. There is also a line of trivial solutions that represents 
physical one phase behavior, but mathematically yields two phase solutions, that is, 
the tool fractions are the same in each distinct phase. These solutions are given in 
Table I where the superscript I represents the first liquid phase. The mol numbers for 
the second liquid phase are obtained as n{ I = n~ Vi. The Gibbs free energy surface 
as a function of the mol numbers in liquid phase I is pictured in Figure 2, with the 
trivial solutions lying along the line defined by nl ~ - n2 S = 0. Lin [13] employed a 
successive continuation method to solve the problem and trace all possible solution 
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Fig. 2. Gibbs energy surface for Example 1. 

G 

branches. In this manner, all the local and global extrema were obtained. A local 
solver will have difficulty obtaining the global solution unless the starting point 
lies close to it, and the trivial solution or one of the local optima may be found. To 
illustrate this point, when (NCF) was solved using MINSO5.3 from 100 randomly 
selected starting points, the global solution was found in only 13 cases. The strong 
local minimum solution was found in 5 cases, and the trivial solution was obtained 
in the remaining 82 cases. The explicit mathematical formulation is given as: 

min G/  = nl  lnn l  + nllnn~ -[n~ + n21] In [nl + n21] 

+ n 2 In n 2 + n~ In n~ - [n21 + n22] In [n~ + n 2] 

+ ~12"/'12n~ff2 rl 'q'- ~21T21nl~I/1 "t- ~12T12n21ff2 2 "n t- ~21T21n2ff~ It2 

~'~ " { ~ I  + nil- = ,~1 

nl + n~ = 0.5 

.{  + n~ = 0.5 

0 < ~  1 1 n2, n~ < 0.5 n l ~  n2~ _ �9 
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By using the mass balance equality constraints to eliminate the variables of 
the second liquid phase, the number of connected variables can be reduced to 
Nov  = 2. Thus, a maximum of four relaxed dual problems must be solved at each 
iteration. Any variables associated with the eliminated phase are designated with a 
superscript E.  The x-variable set for the eliminated phase is then defined as: 

^ nTi - -  n i  

l E C  

Vi, j E C 

where {ni} are the variables of the non-eliminated phase and the formulation, 
noting that the superscript I has been dropped. The explicit Lagrangian was derived 
as Equation (23) and yields the following expression: 

L(ni, fii, 820 82E ~i, ~E) = 

= {nl In nl + n2 111 n2 -- (nl  + n2) In (hi  + n2) 

+ ( n T  - , ~ )  In ( , q  - n l )  + ( , ~  - n~)  in (n~  r - n : )  

- ( n T  - ' ~  + ' ~  - n : )  1 .  ( n T  - n ,  + , g  - n : )  

- , ~ , ~ ,  - , ~  - (,~,~ - n l ) ,~1  ~ - ( , g  - n ~ ) ~ f }  

+ ~11~1 [nl -- n i l  "+" ~t12~21 [7"21 -+" ~1] [?Z2 -- n2] 

-I- ~21~12 [7"12 "Jr- "~2] [~'/'1 -- ~'1] q" ~'~22"~2 [n2 -- ~'2] 

- ,i,l~ ~ [n ,  - ~ l ]  - ~ ' g a ~ ,  ["21 + ~ f ]  [n~ - ~] 

- -  - -  - -  @ 2 2 , ~ 2  [ n 2  - -  ~ ' 2 ]  �9 

Notice that the term within curly braces is convex and that the interaction between 
the x and the y variable sets is purely bilinear. The derivatives of the Lagrangian 
with respect to the z variables yield linear functionalities in the y variables allowing 
the y space to be partitioned in a simple manner. The Lagrangian generated in 
Region 1 of Iteration 1 is shown in Figure 3, where 0.25 _< ni < 0.5 Vi. 

A local solver will not converge to the global solution from the initial point 
considered above. The progress of the upper and lower bounds is charted in Table 
II. The average time to solve each relaxed dual is approximately 0.003 cpu sec. 
The total cpu time required was 1.11 sec. It should be noted that for 33% of the 
total iterations, only 2 relaxed dual problems were solved, demonstrating the fact 
that the maximum number of problems need not be solved at every iteration of 
the algorithm. In addition, 66% of the solutions obtained from the relaxed dual 
problems were fathomed. 
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Fig. 3. Gibbs surface and Lagrangian for Region 1 of Iteration I of Example 1. 

TABLE II. Progress of bounds for 
Example 1. 

Iteration M r p(fiK) 

1 -0 .42615 -0.01758 
2 -0 .23027 -0.01758 
3 -0 .22209  0.00507 
4 -0 .10955 -0.01754 
48 -0.02408 -0.01980 
74 -0.02166 -0.01988 
87 -0.02059 -0.02002 
91 -0.02042 -0.02018 
106 -0.02021 -0.02020 

3.6.2. Example 2: n - P r o p a n o l -  n-Butanol - Water 

This sytem was one of two studied by Block and Hegner [4] in their modeling of 
three phase distillation towers, n-Butanol and water form the only partially miscible 
binary pair (i.e. it is a Type I system) with a relatively small domain of immiscibility. 
The binary parameters as obtained by them for use in the NRTL equation are 
supplied in Table III. Gs supplies the objective function to be minimized, and 
N o v  = 3. Block and Hegner [4] conducted the liquid phase splitting computations 
independently of the vapor phase, i.e., the parameters have no dependence on 
temperature. It is therefore meaningless to consider a vapor phase for this example. 
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TABLE III. Binary data for Example 2. 

n-Propanol (1) - n-Butanol (2) - Water (3): Tij and aij dimensionless 

Components i j  i j ~ij rji  a l j  = aj i  

C 3 H 8 0 -  C4Hlo0 1 2 -0.61259 0.71640 0.30 
C3H90 - H 2 0  1 3 -0.07149 2.7425 0.30 
C4HmO - H 2 0  2 3 0.90047 3.51307 0.48 
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Walraven and Rompay [23] subsequently used this problem in order to test their 
phase splitting algorithm for a number of different feed charges. The explicit 
formulation is given below: 

min & I 

s.t. 

=721 
+ 7212 

+ 72] 

+ 

+ 

+ 

In n I + n I ha n21 + n31 In n~ - [n I + n~ + n~] In [n I + n~ + n~] 

In n 2 +%2 In %2 + n 2 In n 2 - [%2 + n~ + n 2] In [n 2 + n 2 + n3 2] 

[~12T12 ffgl q- [~13T13 ~ l ]  q- n I [~217"21~1 q- ~23T23~] 

72~ [a31T31 tit I --1- a32T32xI/1] 

n 2 [G12T12xI/2 + ~13TI3XI t2] -I- n 2 [~21T21 xI "t2 -1- ~23T23~I t2] 

~ [ ~ , ~  + ~ ~ ]  

xI/12 {722 q_ ~21n2 _.}_ ~31n32} : nl 2 

kT/1 (~12721 q_ 721 + G32n~} = n 1 

~ {G12nl 2 + n 2 + ~32n 2} = n22 

~I + 72,~ 72T 0 _< ' ~ < ,g  ~" ?~1' 721 -- 

.~ + ~ = n~ 0 _< n~, ~ _< ~ 

n3 l q _ n 2  72T O ~  1 2 < n3 T .  723' 723 -- 

Two source feeds from the work of Walraven and Rompary [23] were examined, 
and these charges are given in Table IV. The first of these lies well within the 
immiscibility region - {72ff} = {0.04, 0.16, 0.80} - and therefore causes little 
problem for alocal solver. However, the second considered source charge of {n  T } = 
{0.148, 0.052, 0.800} lies close to the plait point, an area in which it is notoriously 
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TABLE IV. Global solutions for Example 2. 

Solutions for n-Propanol (1) - n-Butanol (2) - Water (3) at T, P = 1 atm 

Feed Liquid I Liquid II ^* G H cpu N1 NF 
Component (mols) (mols) (tools) ( - - )  (sec) ( - - )  (%) 

C3H80 (1) 0.040 0.0049 0.0351 -1.24112 5.35 268 65 
C4HloO (2) 0.160 0.0095 0.1505 
H20 (3) 0.800 0.4153 0.3847 

C3HsO (1) 0.148 0.1280 0.0200 -1.1919716 16.79 903 26 
C4Hlo0 (2) 0.052 0.0456 0.0064 
H20 (3) 0.800 0.6549 0.1451 

difficult to obtain the correct equilibrium solution. The trivial solution objective 
function value is -1.1919705, while the two phase global solution has an objective 
function value of -1.1919716, a difference of only 11 . 1 0 - 7 !  Solving (NCF) 
using a local solver succeeded in obtaining the global solution from only 8 out of 
100 random starting points. Nonetheless, the GOP algorithm generated the global 
solution for this very difficult problem when supplied with a trivial solution starting 
point. This clearly demonstrates the effectiveness of the algorithm in generating 
global solutions for extremely challenging problems. The equilibrium solutions for 
the two sets of conditions considered here are given in Table IV. The difficulty 
of the problem when the source charge is close to the plait point is evident in the 
increased computational effort required to obtain the equilibrium solution for this 
case. 

4. Analysis for the UNIQUAC Equation 

A commonly used activity coefficient correlation is the UNIQUAC equation orig- 
inally proposed by Abrams and Prausnitz [1], where the excess Gibbs energy is 
postulated to be composed of two contributions: a combinatorial part due to the 
differences in the sizes and shapes of the molecules, and a residual portion due 
to the interactions that take place between them. Thus, differences in molecular 
size are taken directly into account. To obtain improved agreement for systems 
containing water and alcohols, a modified version of the universal quasi-chemical 
equation for the correlation of liquid-phase activity coefficients was proposed by 
Anderson and Prausnitz [2, 3] and is given as: 

In 7i = In 7~ + In 7~ Vi C C 
where 

r z 
In 7 ] = In + x~ ~ q ~ l n ~ + l ~ - - -  ~ ljxj 

xi jEC 

and 

(29) 

(30) 
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ln --q  / 
lEC 

(31) 

where ,,//c and "yff are the combinatorial and residual contributions respectively to 
the activity coefficient at tool fraction xi, "cij are non-symmetric binary interaction 
parameters, qi, q~ and r~ are pure component structural parameters, and z is a lattice 
coordination number, l~, Oi, 0~ and r are defined by the following relationships: 

Z 
li = ~ �9 (ri - qi) - (ri - 1 )  Vi E C (32) 

O~ -- qixi Vi E C (33) 
qjx j  

jEc  

q~xi 
Vi E C (34) o: -  E ' qjx j  

jeC 

r ix i  Vi E C (35) 
?~jxj 

jEC 

where 0i and 0~ are the average area fractions for the combinatorial and residual 
portions of the activity coefficient expression, and r is the average segment frac- 
tion. Note that these ratios can be equivalently defined for mol numbers as for mol 
fractions for any given phase. In the original formulation of Abrams and Prausnitz 
[1] ~ = q~. 

Equation (2) yields the relationship between the fugacities and the activity 
coefficients. If the following series of steps are undertaken: 

(i) the first logarithmic term in xi of Equation (30) is brought over to the left 
hand side, 

(ii) the non-logarithmic term involving r of Equation (30) is expanded out, 

(iii) the terms involving 0~ in Equation (31) are expanded out, 

then the following expression is obtaned: 

E l jn j  
( z q~) In r + 2z j e c  In 7 i x ~  = k l - q~ In O~ + l i  - r i .  S - "  

r j n j  
jEC 
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1 I ' ' j~C q~rijnj 
- - - - - f - -  ' " E qITlJ nt E ] - - -  

\ j~c / toG 

(36) 

By substituting Equation (36) into the original objective function of Equation (1), 
it is possible to write the objective function for the case of multiple liquid phases 
in terms of the mol numbers in the following form: 

min G ( n ) =  

(1- lnO +l, = ~  ~ n ~  R T  + 2 5 qi - k 
i6C keP  [ jecE rjnj 

i ije~c qJ~J J 
I j~C I -'T, n ~ 

- qi In / - - -  _.'-ff~__kE qjnj I + qi -- qi . E----U--kqlTtJn l 
\ jcc / t~c 

(37) 

where 0~ and r are now defined for all phases k. This is a complex expression 
involving logarithmic and quadratic quotients, and is clearly nonconvex. However, 
by exploiting a number of properties associated with Equation (37), it is possible 
to obtain a more tractable form for the Gibbs energy. Several interesting new prop- 
erties of the terms in Equation (37) are revealed. 

4.1. Analysis of G(n) 

In the foregoing analysis, different ways to express the Gibbs free energy function 
defined by Equation (37) are presented. The final formulation will cast the mini- 
mization problem as the difference of two convex functions (a D.C. programming 
problems), where the convex part is nonseparable, but the concave portion of the 
objective function is manipulated in such a way as to make it separable. In the 
development that follows, the indices i, j ,  l and m are defined over the set of 
components C. 

4.1.1. Simplification of G (n) 

Two simplifying properties are now presented. 

PROPERTY 4.1. The following relation is true Vh E PL: 
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E n~ l i -  r i"  jcC 
iEC E rink 

jEC 

Proof. For each k E PL: 

E ljnj 
jEC 

E nk~ Ii - ri �9 k 
ieC E rjnj 

jEC 

= 0 .  

iEC iEC rjnj 
( j ~ c  

= E l , ~ -  E l j~  = o. 
iEC j~C 

This implies that the parameter li need not appear in the Gibbs free energy expres- 
sion. [] 

PROPERTY 4.2. 

iCC jEC ql'rljnl 
lEC 

Proof. For each k E PL: 

~ n ,  { q~ - q~ . ~ ~ r~jn~ } k 

iEC jEC E ql Tlj n l 
lEC 

The foUowing relation is true Vk E PL : 

= 0 .  

E ' ~} qm Tmjrt m 
! k t k mEC 

-- qini -- E " t k -- qjnj = 
jEC E �9 ql Tlj nt 

IEC 

E / k  E / k  = qini -- qini -= 0,  
iCC iEC 

where the term in braces is seen to equal unity. [] 

Employing Properties 4.1 and 4.2 in Equation (37), the objective function can now 
be written as follows: 

AG~'f (1 ~ q~) In r + m i n G ( n ) = E  E n/k{ R ~  + _ z  Zq~lnO~ 
iEc kEP 
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jEc jEc 
(38) 

Some new notation will now be introduced in order to demonstrate the special 
structure that Equation (38) naturally possesses. The following new parameter, z R, 
is introduced to aid in this process and is defined as: 

z R (2  q i -  1) 
--  _> 0 Vi E C .  (39)  

rd 

z is usually taken as 10, with qd >_ 0.2, and therefore z R is always positive. Using 
Equation (39) and expanding out r in terms of the mol numbers, one obtains 

Z 

dec deC ~ rjn~ Vk E PL . 

j~c 

It is now convenient to make the following definitions: 

Ak E z~rink In rin~ = k Vk E PL (40) 
iEc Z r jnj  

jEC 

z ~ec k 13 k = -~ . qin d In 
qdn~ 

jEc 

Vk E PL (41) 

Ck : [~_~ q~n~] In [ ~  q~n~] Vk E PL (42) 
iEC dCC 

~)k - - Z  t k i k = qind In ~ qjTjdnj 
iEC jEC 

Vk E PL . (43) 

Note that 0~ has been expanded out in terms of the mol numbers Vk E PL in the 
definition of B k. These definitions allow the objective function of Equation (38) to 
be equivalently written as follows: 

m i n O ( n ) = ~  ~ n~ AG~' f  C k . + +Z)k} 
i cC kEPL IeCPL 

(44) 

This objective function still yields a nonconvex optimization formulation but it is 
simpler than the objective function customarily employed. 
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4.1.2. D.C. Transformation 

It will now be shown how the objective function of Equation (44) is converted into 
D.C. form. Firstly, the following property is required. 

PROPERTY 4.3. Let Pi be a positive parameter defined Vi. Define the real-valued 
function f (n )  with n > 0 as follows: 

f (n )  = { ~  p~ni} In { ~  pin~} 
i i 

then y(n) is convex. 
Proof  See Appendix C. [] 

REMARK. A number of observations can be made on the basis of Properties 
3.2 and 4.3 in relation to the terms of Equation (44), and are listed as follows: 

(i) the term ,,4 k as defined by Equation (40) is convex Vk E PL (apply Property 
3.2). This also implies that -,,4 k is concave, 

(ii) the term/3 k as defined by Equation (41) is convex Vk E PL (apply Property 
3.2), 

(iii) the term C A as defined by Equation (42) is convex Yk E PL (apply Property 
4.3). 

PROPERTY 4.4. Define 7P k and 7) k Vk E PL as follows: + 

79 4 ~ , k n~ : q in i  in  

J 

~k_ ~ ,k k = qini In n i 
i 

then T)~ and 19 k_ are convex Vk E PL. Further, 2) k as defined by Equation (43) 
can be equivalently expressed as the difference o f  these two convex functions: 

79 k = 7) 4 - 7) k_ Vk E PL . (45) 

Proof  See Appendix D. [] 

Thus, it has been demonstrated how the majority of terms in Equation (44) are by 
themselves convex or concave. In one instance, it was necessary to transform a 
nonconvex term (T ~k) into the summation of a convex and a concave term. It is 
now possible to write the objective function as follows: 
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min G ( n ) = ( Z  Z n~ AG~'f 
RT iCC kEP 

- - +  Z {B +c 
kCP 

- { Z { A} + D~-}} ' (46) 
kCP 

The key feature to notice is that each term within braces is convex. The concave 
term -7 )  k_ is separable. However, the concave term - .A k is nonseparable. Because 
it is easier to construct the convex envelope of a separable concave function than a 
nonseparable one, the following definitions are required so that the term - .A k can 
be written in a radically different form: 

zR = rain {z~} 

Z A = Z R -t- Z [zR -- Z~4] (47) 
iCC 

: Z vi e c 
j#i 

On the basis of these definitions the following property is derived: 

PROPERTY 4.5. If ~4# and flt~ are defined Vk E PL as follows: 

• k  = Z A " Z rin~i In ~ rin~ + ~ z~rin~ In n~ 

jcC 

k z~ri In ri - - Z  n i  " 
iEC 

'~ In n~ 
iEC 

then r and .A~ are convex functions. Further, -Jr k can be expressed as the 
difference of these two convex functions: 

- ,A  k = A~_ - A ~ .  (48) 

Proof. See Appendix E. [] 

Property 4.5 allows the nonseparable, concave term - ,A k to be replaced by the 
difference of two convex functions, defined in Equation (48). The key change is 
that the concave part of the new expression is now separable as shown below: 

min G ( n ) =  { ~  y~ n~ AG~'f C ~ +~D~_}} R--T -+ Z 
iEC kEP kEP 
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-{y'~.  {,Ak +7)~}} . (49) 
kEP 

The terms ,,4 k, Jt~_, Jt~, B k, C k, V~_ and :D~ have been shown to be convex. Thus, 
the terms contained within the braces of Equation (49) are convex, i.e., G(n) is 
now given by the difference of two convex functions. At this point, it is convenient 
to collect the convex portions of the objective function together, defined as C~ 
Vk E PL, to yield: 

C~ = Z n~ { AGki'I zRri In ri } 
RT 

iEC 

+ zA " { ~-~ rin~ } ln { ~-~. r~n~ } + ~-~ z~rin~ in 
iCC iEC iEC k Z rjnj jEC 

+ ~ q~n i In 
qjn) 

jEC 

+ {~-'~ q~n~} In { ~  q~n~} 
iEC iEC 

qini In t k " iEC 2_., qj'rjinj 
jEC 

Furthermore, if the parameter ~oi is defined as follows: 

= + + v i  e c 

then (DC) is defined as: 

mins.t. G(n)o = A �9 n - b o < n =  kEPLZ<_ ckn T- ieC ~ kePL ~ ~oin~ In n/k / 

(50) 

(51) 

(DC) 

where C~: is defined by Equation (50). The objective function consists of a convex, 
nonseparable portion, and a separable, concave portion, with a convex constraint 
set. The expression for G(n) in (DC) is very different from the original Gibbs 
energy function defined by Equation (37). The analysis of the original function has 
revealed interesting properties in terms of the algebra and in terms of its convexity 
properties. It has been shown that this equation can be expressed as the sum of 
convex and concave parts. The specially induced structure will be used to full 
advantage in solving (DC). 
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4.2. Branch and Bound Algorithm 

It is worthwhile to point out the salient features of the formulation for the phase 
and chemical equilibrium problem, as given by (DC): 

(i) 

(ii) 

(iii) 

the objective function is D.C. with a separable concave portion, 

the feasible region is an n-rectangle, 

the constraint set is closed and convex (a set of linear equality constraints). 

One of the first algorithms proposed to solve problems of the above nature was 
that of Falk and Soland [6]. It is a branch and bound type algorithm, where a 
branching scheme successively refines the feasible region into smaller and smaller 
n-rectangles, in each of which a convex subproblem is solved that supplies a lower 
bound on the global solution of (DC). In this manner, a sequence of nondecreasing 
lower bounds is generated that converges under certain conditions to the global 
solution. The algorithm used to solve (DC) in this work is based on the original 
paper of Falk and Soland [6]. The approach of this algorithm and several others has 
been generalized and discussed in the book of Horst and Tuy [11]. The algorithm 
shares many similarities with that used for the NRTL equation, except for slight 
variations in the partitioning scheme, and significant differences in the structure 
of the subproblems used to provide lower bounds for the global solution. Thus, in 
what follows, the notation used will in as far as possible be the same as that of 
Section 3. 

4.2.1. Convex envelope of G(n) 

In order to obtain valid lower bounds, the approach is to derive convex underes- 
timators for the concave portion of the objective function in successive partitions 
of the feasible region. Suppose that at a given stage in the algorithm, the partition 
currently under consideration is an n-rectangle defined as follows: 

< k < ldBnk ~/i E C k E PL �9 (52) Z:n~ " n~ _ 

The manner in which the partition defined by these box bounds is obtained is 
described in the next section. A lower bound is required for the objective function 
defined in (DC). The simplest such bound can be obtained by constructing the 
convex envelope of G(n). The concave portion of the objective function is replaced 
by its convex envelope, which for a separable concave function is simply the affine 
function that joins the two endpoints of the region under consideration. This is 
shown for the one variable case in Figure 4 where the concave function - n  In n 
and its convex envelope, ~ (n ) ,  are plotted between the lower and upper bounds 
/2~ and b/ft. Thus, the convex envelope of each concave function, labeled q2~, in 
the region whose bounds are given by Equation (52) is: 
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-n In n 

Fig. 4. 

~ -n In n 

~ ~/(n)- 

1 I * 

Ln Un n 

Concave function and its convex envelope. 

B In B 
�9 

Vi E C ,  k E PL . (53) 

Thus, the convex envelope of the concave portion of the objective function 
is then the summation of these individual affine functions. The convex envelope 
of the convex portion of the objective function is obviously the function itself; 
this implies that the convex envelope of (DC) is a convex function and any local 
solution to the following problem will be a global one: 

kEP iEC kEP 

s. t .  s < n k <_ L/nBk V i E C , k E P 

O = A . n - b  

(UES) 

Formulation (UES) provides a lower bound on the global solution in the region 
defined by B {E B, L/B}. Solving subproblems of type (UES) in successive refine- 
ments of the feasible region will generate a nondecreasing subsequence of lower 
bounds. 

4.2.2. Partitioning Scheme 

When the GOP was used to solve the phase and chemical equilibrium problem for 
the NRTL equation, the initial n-rectangle defined by Equation (7) was succes- 
sively subdivided into more and more n-rectangles. For the case of the UNIQUAC 
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equation, the branching scheme is similar but there is one major difference. For the 
UNIQUAC as few as 2 subproblems need be solved at each iteration to guarantee 
convergence to the e-global solution, whereas for the NRTL, upto Ncv hyper- 
planes were used to partition the current partition into as many as 2 Ncv regions. 
For consistency, the number of variables that appear in the concave portion of the 
objective function is also labeled Ncv. 

The same basic tree structure that was used for the NRTL equation is also 
employed here. Each n-rectangle within which a subproblem of type (UES) is 
solved has a node, ks, associated with it. An initial point is chosen labeled (fi~}. 
This parent n-rectangle is then partitioned by a number of hyperplanes, labeled 
Np, passing through the point {fi~}. The number of these hyperplanes can vary as 
follows: 

1 < Np < N c v .  

This means that 2 NP box regions are created at each iteration. In each of these 
subrectangles Problem (UES) is solved to provide a lower bound; if this lower 
bound lies below the current best upper bound, then the solution is stored as #ks 
and n kS, so that each solution node ks has these quantities, as well as its box 
bounds, associated with it. It is important to realize that Np is a user specified 
parameter, and that it can vary from one iteration to the next. The trade-off is 
tighter lower bounds for higher values of Np and less subproblems to be solved 
for lower Np. If it is set at one, then only two subproblems are solved for that 
iteration. 

The important question of how to decide the partitioning remains. One natural 
means is to measure the distance, labeled g~, between the concave function and its 
convex envelope at the value of the current point: 

where fi~ represents the solution value obtained as the solution of the current node, 
Sc. Intuitively, one expects that the larger this distance, the greater the need for 
further refinement. Horst and Tuy [1 l] prove (see Chapter VII.4) that if the current 
n-rectangle is divided into two (or more) n-rectangles about the variable with 
the largest value of ~ ,  then the branch and bound algorithm to be defined in the 
next section will converge to an e-global solution of (DC). In the version of the 
algorithm used here, more than two n-rectangles may be created at each iteration, 
if desired. Therefore, the distances ~ are rank-ordered from highest to lowest. 
The set of parameters (7-/~} determines if there is a partitioning hyperplane for 

k If 7-/~ = 1 then a hyperplane is used to divide the the corresponding variable n i . 
region for that particular variable as n~ < ~ and n~ > fi~. This is shown in Figure 
5 for the first iteration where Np = 1. Suppose that the greatest distance between 
the concave function and its convex envelope occurs for the variable nl ,  so that 
7"/1 = 1 and 7-/2 = 0. This means that the initial feasible region is divided into two 
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n 

T 
n 2 

~2 

Fig. 5. 

z B l 
sB2 1 ={-1}  SiX ={+1} 

7 
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i 

nl HI= {0} 

-- H 2= {0} B 2 

/ S21 ={+1}  
/ 

H 2 = {1} 
B 2 

S2 2 ={-1}  

n l 

Box regions of UNIQUAC example. 

box regions, labeled B~ and B 1, where the superscript corresponds to the iteration 
number, and two subproblems are solved. In the general case, Np hyperplanes are 
used to divide the current region into 2 NP n-rectangles for the largest Np distances. 
For the remaining variables, no dividing hyperplane is used so that ~ --- 0 and the 
box bounds for these variables are simply their regional bounds, i.e. s ~ = s 

and/,/~k = < ~ .  

Having solved a set of subproblems of type (UES) at a given iteration, the 
manner in which the value of the y variables is chosen for the next iteration is 
exactly the same as the GOP algorithm for the NRTL. Having chosen the infimum 
of all lower bounds, the region associated with this particular node is divided into 
2 NP new n-rectangles to obtain successively tighter lower bounds. In the context 
of Figure 5, assume that the infimum of the lower bounds occurs in box region 1 
of Iteration 1. At Iteration 2 with NB ---- 1 again, suppose that the distance is now 
greatest for n2, so that "]'~2 = 1, but ~ l  = 0. This implies that at Iteration 2, the 
region is divided into two box regions, B 2 and B 2 (see Figure 5), wherein (LIES) 
is solved to obtain two new lower bounds on the global solution. Thus, 2 Np new 
nodes are generated in the solution tree at a given iteration. Experience has shown 
that convergence properties are not significantly altered by tinkering with Np. It is 
worthwhile to set Np higher in earlier iterations to get tighter bounds, and reduce 
it as the algorithm proceeds to avoid adding excessive numbers of nodes to the 
solution tree. 
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4.2.3. Branch and Bound Algorithm 

The algorithm shares many similarities with that used for the NRTL equation, and 
the notation is therefore the same as that used in Section 3. The main difference 
lies in how it obtains lower bounds on the global solution. In this case, only one 
underestimating function is included when generating lower bounds for (DC). The 
complete branch and bound algorithm for the phase and chemical equilibrium prob- 
lem when the liquid phase is modeled using the UNIQUAC equilibrium model is 
now given. 

STEP 0: Initialization 
Select an initial mol vector rio and convergence tolerance r 
Initialize Rc {s  L/n}, pU = +co, M L = - c ~ ,  Sc = R,  k S = 0, { ~ }  = 0, 

N p  = 0 .  

STEP 1: Primal Problem 
Solve (DC) locally to give G* and update pV = min [pU, 6*]. 

STEP 2: Convex Underestimation Phase 

(1) Choose a combination of box bounds, Bi from the set CB (ICBI = 2N ). 
Bt k Use sik, 7-/i and RK {s to set BK {s 

Construct 9k  based on BK {s L/B} and solve (UES) to yield #* and n*. 

(1) If #* >_ pU _ ~, then fathom solution. 

(ii) If p* < p U _ e ,  then ks = ks + l, p(ks) = S c , # k s  = # . , n k S  = n . ,  
Rk~ {s Un} = BK {s 

(2) Choose another set of bounds Bt from CB and return to (1). 
If there are no remaining unchosen Bl in CB, then proceed to Step 3. 

STEP 3: Select Mol Vector for Next Iteration 
Select infimum of all #~3 s , and set Sc = ks, the associated node. 
Set a K+l = n ks, M L =/~so and RK+I {s = Rks {s 
Choose 1 < Np < Ncv .  Set D = {i, k} --- C • PL, {7-/~} = 0. 

for m = 1, ..., Np 

{i*, k*} = argmax [ -  ~ In ~ - ~ (n~)]k-k 
D 

7/~C = 1 

n ----D\{i*,k*} 

end 
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STEP 4: Check for Convergence pu_ ML[ 
Check if p u  _< e. If true, then STOP; otherwise set K = K + 1, and 

return to Step 1. 

Convergence to an e-global solution of (DC) by the above algorithm has been 
proven by Horst and Tuy [11]. 

Note that it is also possible to use the GOP algorithm for the case of the UNI- 
QUAC equation. New variables, labeled ~/k, would be introduced so that ~ -- n~ 
Vi E C, k E PL. The nonconvex terms of the objective function then take the form 
- n ~  In ~ .  This transformation will clearly satisfy Conditions (A) of the GOP. If 
the y variables (i.e. n~) are held fixed, then a convex objective function results. If 
the x variables (i.e. ~ )  are kept constant, then a convex objective function is also 
obtained. However, because the linear convex envelope derived in Section 4.3.1 
represents the tightest possible convex underestimator of the objective function, 
it is clear that the bounds generated by the GOP algorithm will not be as tight as 
those generated in the branch and bound algorithm just described. 

4.3. Example 3: Toluene (1) - Water (2) 

This example was studied by Lantagne et al. [12]. They used the modified version 
of the UNIQUAC equation for systems containing alcohols or water as proposed 
by Anderson and Prausnitz [3]. It is assumed that there is an equimolar charge of 
toluene and water (n T -- n T = 0.5). There are two postulated liquid phases, so that 
PL ~- ( k l ,  k 2 } ;  these phases share the same standard state so that the Gibbs free 
energy of formation terms can be eliminated as for Example 1. The pure component 
structural parameters and the binary interaction data were obtained from Prausnitz 
et al. [18] and these are given as: 

ql -~ 2.97 q~ = 2.97 rl  = 3.92 l l  = 1.83 

qe = 1.40 q~ ----- 1.00 re ---- 0.92 12 = - 2 . 3 2 .  

The parameters l~ are supplied even though they are not used in the formulation. 
The interaction parameters are given as: 

712 = 0.09867, 7"21 = 0.59673. 

The parameters introduced to convert the original formulation into a D.C. program- 
ming problem are then defined as: 

Z ~ =  5ql--  1 Z~-- 5q2-- 1 
rl r2 

= 3.53316 = 6.52174 
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z R = rain ( z ~ ,  z R} 

= z R 

= 3.53316 

Z A = Z R + (Zl R -  Z R )  + (Z2 R -  zRM) 

= z2 R 

= 6.52174 

z~ = z~ - z ~  z~ = z~ - 4 

= 2.98858 = 0 

(Pl = q~ + r l  " (Z R + Zl B) = 28.53522 

~o2 = q~ + r 2 "  (z2 R + z~)  = 7 .0 .  

This allows the explicit formulation to be written as follows: 

min G~ = --nT z~rl  In r l  - nT zzRr2 In r2 

+ z A [rlnl + r2-~] In [~1-I + ~2-~1 + Z;~l,q 1. 

+ Z A [rl n2 + r2 n211n [rl n2 + r2 n21 + zlBrln21 In 

nl 
r l n  I + r2 n l  

~,~21 + ~2~ 2 

qln{ q2n 1 z z 
+ -~ qln~ In + -~ q2n I In 

qln I + q2 nl qln] + q2 nl 

z ql n2 In ql n 2 + z q2n 2 
+ 2 qln~ + q2n 2 2 q2n2 In qln2 + q2n~ 

,q t 1 t 1 t 1 t 1 t 1 
+ [qlnl + q2n2] In [qlnl + qzn2] + q l n l  In 

+ q2n21n r , 1  - ' n  1 , 1 
12(/1 1 + q2n2 

t 2 t 2 t 2 q~n21 
[qlnl + 2 21 + [ql r~l + q2n2] In + q~n21 In 

+ 
n~ 

q'2 n2 In T12~17~21 -{- q~n2 

t 1 t 1 
q l n l  + T21q2n2 

n~ 
! 2 qlnl  + T21q~n 2 

- ~1 [nl In n I + n~ In n 2] - ~a2 [n 1 In n21 + n~ In n~] 
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s.t. 

nl  + : 0 .5 

+ : 0 .5 

0 ~ 1 1 n 2 , n 2  < 0 .5  
n l ~ 2 ~  _ �9 

The last line of the objective function contains the nonconvex portion (which 
is separable and concave). The equality constraints can be used to eliminate the 
variables of the second liquid phase in the same manner as was done in Examples 
1 and 2. This reduces the number of connected variables to Nov  = 2. If a trivial 
solution starting point is used, the algorithm converges in 330 iterations to the 
global solution which is given in Table V. If such a starting point is supplied to 
a local solver, it will fail to converge to the global solution. The total time taken 
to solve the problem was 4.06 cpu sec and 64% of the solutions were fathomed. 
Because the size of the problem is small, 22 = 4 subproblems were solved at each 
iteration (i.e. Np = Nov  for all iterations), even though it is necessary to solve 
only two at each iteration. 

TABLE V. Solutions for Example 3. 

Global Minimum -0.01976 0.00043 0.47724 

LocalMinimum 0.30919 0.25 0.25 

The algorithm has been used to solve several other examples with more com- 
ponents and phases. The number of variables stays relatively small so that the 
tested problems stay of manageable size. This is because the effort of obtaining the 
interaction coefficients, ~-ij, becomes prohibitive for more than four components. 

5. Conclusions 

It has been demonstrated how the Gibbs free energy function can be radically altered 
when the liquid phase is modeled using the NRTL or UNIQUAC equations (and an 
ideal vapor phase). Numerous simplifications and properties of the equations have 
been revealed that allow the structures of the problems to be fully exploited. The 
GOP algorithm was used to obtain an e-global solution for the NRTL equation, 
where a biconvex function is minimized over a set of bilinear equality constraints. 
A branch and bound algorithm, based on that of Falk and Soland [6] was used 
to likewise guarantee obtaining an e-global solution for the UNIQUAC equation. 
Examples were presented which demonstrate the effectiveness of the algorithms 
in obtaining global solutions of a number of difficult phase equilibrium problems, 
for which no previous approaches could make the same guarantees. 
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TABLE VI. Progress of bounds for Example 
3. 

Iteration Lower bound Upper bound 

1 -3.77305 0.30923 
2 -3.65550 0.18812 
3 -1.28319 0.18812 
4 -1.13669 0.05711 
12 -0.40768 0.00389 
22 - 0 . 1 5 5 4 7  -0.00787 
36 - 0 . 0 6 3 4 3  -0.00760 
42 - 0 . 0 4 4 5 9  -0.00657 
49 - 0 . 0 3 7 4 4  -0.00547 
52 - 0 . 0 3 5 5 3  -0.01968 
122 - 0 . 0 2 0 8 8  -0.01975 
198 - 0 . 0 2 0 0 1  -0.01976 
330 - 0 . 0 1 9 7 8  -0.01976 
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Appendix A 

In what follows the mol number phase superscripts are dropped for clarity of 
presentation. It is required to prove that the following relation is true: 

E - E = o.  

l, j c c  t~c Icc 

(A.1) 

The basis of the proof is to extract the common term ~ j  ~j in j  from the denomina- 
tor of Equation (A. 1). Rewriting the term to the left of the minus sign of Equation 
(A. 1) yields: 

j 1 

3 J 

(A.2) 
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The first term in the denominator of the term to the right of the minus sign of 
Equation (A.1), E1 ~tjnl, is extracted and summed over the index i, that is, it is 
changed to ~ m  G,~in~. In doing so, the indices of Gij in the numerator of the term 
to the right of the minus sign of Equation (A.1) are swapped to give Gji and the 
second indices in the 1 summation terms change from j to i as follows: 

1 

ieC E Gljnl E Gljnl 
l l 

1 

m 

"rti~tinl 
l 

I 

1 
= ~,, " ni " E "rli~lint (A.3) 

noting that the indices of the terms ~ j  Gjinj and El Gtint run independently of 
each other and therefore cancel. Subtracting Equation (A.3) from Equation (A.2) 
yields the desired result: 

1 1 
E E E E = 

J J 

E ~ j i n j  
J 

j z 

= 0  

realizing that the indices of the terms in braces run independently of each other 
and are therefore equal to zero. The same result can be obtained for any phase k. [] 

Appendix B 

It is required to establish if the following function is convex: 

nF 
fr  = n r ln  for any ~-= 1, ...,p 

E pj n j  
j=l,...,p 

where p represents the number of variables of the problem. There are a number of 
ways to prove its convexity. The chosen method here is to explicitly evaluate the 
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eigenvalues for ft. For notational convenience, u = ~ j  pjnj in the foregoing. A 
necessary and sufficient condition for convexity requires that all the eigenvalues be 
nonnegative. These are obtained by evaluating the roots of the characteristic equa- 
tion of the matrix (I-I - hi). The approach utilizes the following two properties: 

(i) The determinant of a matrix changes sign if two rows (or two columns) are 
exchanged, 

(ii) Adding a multiple of one row to another leaves the determinant unchanged 
(viz. for columns). 

Step 1: Evaluation of (I-I - hi). 
As a first step, the second order derivatives of the function fr  are given as follows: 

n_~uZ i = j = 

02 fr _ p~r  - u 
OniOnj pj u2 i = -~, j r i 

nT 
PiPj -~ i r ~, j •-g 

If fi is substituted for P~z  and n for n~, then (It - hi) is given explicitly as: 

f i - u  f i - u  (fi--U)2nu 2 /~ P2 U---" ~ -  P3 u ~  

f i - u  n n 
P2 U2 p 2 _ ~ _ ) ~  P2P3 

~ - - U  n n n . 
P3 u2 P3P2~ P ~ - ~ - A  P3P4-~ ". (n-  hi)= 

o ~ 1 7 6  

n 
P2P4 -~ 

n n n 
P4P2-~ P4P3"~ p 2 _ ~ _  A "'. 

�9 ~ ~ 

�9 �9 

The z'th row and column have been pivoted into the first row and column, leav- 
ing the determinant unchanged because of Property (i). The set of parameters 
{P2, ..., Pp} are assumed to be equivalent to the set {Pl, ..., Pp}\Pz. Thus, the above 
form can be equivalently obtained for any ~ = 1, ..., p. [] 

Step 2: Transformation of (H - AI). 
By Property (ii), the following operations change the structure of (H - AI) without 
changing its determinant: 
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for  i = 3, . . . ,p 
for  i I = i, . . . ,p 

f o r j  = 1 , . . . ,p  
[ P ~ ' ]  

ai, , j  = ai, , j  --  Lp--~_l j a i - l , J  

end  

end  

end  

where aij is the i - j ' t h  entry of the matrix (H - AI). This yields the following 

I H  - AII  - 

result: 

( ~ _ 7 2 ) 2  n - - u  f i - -  72 
A P2 P 3 -  ... 

n72 2 - 7  72 2 

fi -- u n n n 
P2 722 p 2 _ ~  _ . ~  P 2 P 3 - ~  P 2 P 4 - ~  ... 

0 P_2 A - A  0 
p2 

0 0 p4 A -A  0 
P3 

: " , � 9  " ,  

One more operation on the second row is required: 

f o r i  = 2 

f o r j  = 1 , . . . ,p  

end  

end  

[ ~ 
ai , j  = a i d - -  P2 fi _ u a l , j  

The characteristic equation is then equivalently given by the following determinant: 

II-I - A 1 1  - 

f i - u  ~ - u  ( ~  _ _  72)2 /~ P2 P3 - -  

n u  2 ~ u 2 ... 

n 
P2 _ A --)~ 0 0 ... n -- 72 

0 P3A - A  0 
P2 

0 P4A - A  0 
P3 

0 

: �9 .. .. 



246 CONOR M. McDONALD AND CHRISTODOULOS A. FLOUDAS 

This determinant is evaluated by expanding the cofactors down the first column so 
that: 

I I-I - AII = - -,,] I*.,., + [,:,: n .j (_,,)[A211 (B.I) 
L nu 2 f i  - -  

where Aij is the appropriate minor obtained by deleting the i 'th row and j ' t h  
column of (H - AI). [] 

Step 3: Evaluation of 1All1 and 1A211. 
Because A n  is lower triangular, it is clear that: 

[All[ = ( _ _ / ~ ) p - 1  . (B.2) 

A21 is a (p - 1) x (p - 1) square matrix�9 By extracting the common term in the 
first row, its determinant is given as: 

[A21I - u2 

P2 P3 P4 

P~A _A 
P2 

0 P--4A 
p3 

0 0 

. o o  

. ~  

-A  0 ... 

P__5 )~ - A  ' .  
P4 

(B.3) 

= ~ lAP-l[ (B.4) 

where ,A p-1 is the (p - 1) x (p - 1) matrix of the form given in Equation (B.3). Its 
determinant can be determined inductively by expanding across the top column, 
noting that the minors will be upper triangular to yield: 

p 2 1 . 4 p - l l  = ( - A )  p - 2  �9 [p~ + ... + p~] = 

= ( -A)  p-2 �9 T (B.5) 

where 

T =  2 Z pJ 
j = l , . . . , p  

jCz 

(B.6) 

in the general case. This simple relation allows the determinant of the original 
matrix to be easily calculated. [] 

Step 4: Evaluation of 1I-I - A11. 
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The original determinant may now be obtained by substituting Equations (B.2) and 
(B.4) into Equation (B.1) -no t ing  that P2 ], A p - 1  ] =" "]" " ( _ / ~ ) p - 2  by Equation 
(B.5) - to yield: 

r(~:~: "] + [m:--;-~] ~ ' - ~  - : .  " = fI-I aII (-AY-I L ,~:  

= ( _ ~ ) . - , - [ ( . - . ) '  + : _ ~] 
nZt2 - ~  �9 

The eigenvalues are calculated as lI-I - AI I = O: 

A~- = (fi - -  u )2  + n27"  > 0 
nzt2 

:~j=0 v i c e .  

Recall that 

f i  = p~-n-~ , u = Z p j n j  , n = nV and T = 

j = l  ..... p 

2 
Z pj. 

j=l , . . . ,p  
jr 

As a check, notice that Ar = trace H, because ~ j r  Aj = 0. Thus, there is exactly 
one nonnegative eigenvalue and the rest are zero. This is precisely the necessary 
and sufficient condition for convexity. [] 

Appendix C 

A proof of the convexity of the following function is required: 

:<.)--{ v. ,:,}-{ v. ,:,}. 
i=l,. . . ,p i=l,. . . ,p 

The method used is essentially the same as that employed in Appendix B. For 
notational convenience, u = ~ i  pini in the foregoing. As a first step, the second 
order derivatives of the funcion f (n )  are given as follows: 

0 2f p~pj 

O n i O n j  u 

(H - AI) is constructed as for Appendix B, and the following operations will leave 
this matrix unchanged: 

for i = 2, ...,p 
for/~ = i, ...,p 

f o r j  = 1,. . . ,p 

I r a ' ]  aiP,j = ai~,j - -  Lp--~_I j a i - l , j  



248 CONOR M. McDONALD AND CHRISTODOULOS A. FLOUDAS 

end 
end 

end 

where a~j is the i - j ' t h  entry of the matrix (H - ,~I). This yields the following 
result: 

P-~- - -  ,k P l P 2  . . .  

IH - A I I -  

U u 
P_Z 2 ), - ~  
pl 

0 p3)~ 
P2 

0 0 

P l P 3  
u 

0 0 ... 

- A  0 

P~ )~ _ )~ 0 
,o3 

"o~ ".. 

but with T now defined as: 

~=l,...,p 

The eigenvalues are calculated as II-I - All = 0: 

,~1 = ---T _> 0 
u 

)~j = 0 Vj = 2, . . . , p .  

As a check, notice that )~1 = trace H, because ~ j # l  )~j = 0. Thus, there is exactly 
one nonnegative eigenvalue and the rest are zero. This is precisely the necessary 
and sufficient condition for convexity. [] 

This determinant is evaluated by expanding the cofactors down the first column so 
that: 

I , , -  ~ii = .~F ~ - ~] I~,~l + [~] ~-~/I~l ~ 
where All  is given by Equation (B.2) and A21 is defined as: 

A21 = P l  iAp_l I (C.2) u 

with A p-1 defined by Equation (B.5). This means that the determinant can be  
calculated as: 

IH _ .~ll ~_ ( _ ~ ) p - i  [~_ _/~]  q.. [1]  (_~ )p -1  [p2 2 q...., q_ p2] = 
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Appendix D 

Add and subtract the term ~ ~n~ In n~ to the original term 7) k of Equation (43): 

qini q jT j in j  
iCC iCC jEC iEC 

= q~n i In - 7  n k - [ ~ - ~  q~n; k In n~] .  
j~Ec qjTJi j ieC 

The first term in square brackets is the term defined as :D~, while the second term 
is :Dk_. Therefore Equation (45) is seen to be valid. It remains to prove that the 
terms :D~_ and :D k_ are convex. Setting and pj qj.Tj~ = Vj, each individual i'th term 

of the nonlinear part of :D k is seen to be convex. The sum of linear and convex + 

functions is itself a convex function. Hence :D~ is convex. 7) k is a summation of 
separable terms of the form n In n, which are clearly convex terms because q~ > 0 
Vi, i.e. :D~ is convex. [] 

Appendix E 

The original term .A k of Equation (40) is defined as: 

?'i nk  _ 
- -  - i n  E r j n k  

jEC 

= - E ziRrin~ In rin~ + ~ zRrin~ In E rjn~. 
iEC iEC jEC 

A term is now added and subtracted from each i'th term as follows: 

iEC 

k + E { ziRrinki In E rjnj 
i~C jEC 

+ E (E 
j7s ICC 

k 

j r  

j r  lEC 
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- ( zR - zR) E rJ nl] In n~ } .  

This expression can be equivalently written as follows: 

i6C 

i~C j6C j6C 

+ E [E  (4  - in 
icc jr 

k 
rt i 

j e t  

- E [ E ( z ~ -  z~)]r~n~lnn~. 
~ c  j#~ 

Recalling the definitions of z R,  z A and z B as given by Equations (47), the following 
relation is obtained: 

- ~ 4 k =  { -  ~ n~kz~Rr~ lnr~ + z A ( E  r jn])In  ( ~  rjn~) 
i6C j6C j6C 

i6C E r j n j  
j6C 

- { E n~ In n~r~ [z~ + z~]}. 
iEC 

The first term within curly braces corresponds to the definition of A k. Its first term 
is linear. The next is convex by Property 4.3, while the third term is convex by 
Property 3.2. Thus the first term within curly braces is convex. The second term 
within curly braces is seen to be the definition of dt~. It is clearly separable and 
convex. These two terms correspond to the definitions of .A~_ and .A[ as given in 
Property 4.5 so that: 

- A  k = A~_ - A k _ (E.1) 

where .A~ and .A k - have been shown to be convex. [] 
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